Improved Hybrid Model Based on Support Vector Regression Machine for Monthly Precipitation Forecasting

نویسندگان

  • Xuejun Chen
  • Suling Zhu
چکیده

In this paper, we study the time series techniques for the monthly precipitation forecasting. The techniques used in this study are moving average procedure, support vector regression machine, and seasonal autoregressive integrated moving average model and hybrid procedure. Firstly, the moving average procedure is employed to find the trend; secondly, the support vector regression machine is applied to forecast the trend; thirdly, the hybrid procedure is used for provide the last forecasting results based on the above models. For the coefficients, the optimization method we employed is the popular particle swarm optimization algorithm. Three time series are applied to test the proposed idea, which are the monthly precipitation data from Gansu Meteorological Bureau. The forecasting results show that our proposed model is an effective model for nonlinear time series forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monthly rainfall Forecasting using genetic programming and support vector machine

Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...

متن کامل

Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation

Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...

متن کامل

Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)

     In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...

متن کامل

Self Organizing Map and Least Square Support Vector Machine Method for River Flow Modelling Shuhaida Bte Ismail Universiti Teknologi Malaysia Self Organizing Map and Least Square Support Vector Machine Method for River Flow Modelling

Successful river flow time series forecasting is a primary goal and an essential procedure required in the planning and water resources management. River flow data are important for engineers to design, build and operate various water projects and development. The monthly river flow data taken from Department of Irrigation and Drainage, Malaysia are used in this study. This study aims to develo...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013